\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Marking details \& Marks Available \\
\hline A1 \& (a) \& \& 4
3

3
10 \\

\hline A2 \& | (a) |
| :--- |
| (b) |
| (c) |
| (d) |
| (e) | \& | $\begin{array}{cc}137 & 0 \\ 56 & -1\end{array}$ |
| :--- |
| Conservation of A and Z (1) All figures correct (1) |
| $\lambda=\frac{\ln 2}{T_{\frac{1}{2}}} \quad\left(\right.$ or $T_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$) either eq ${ }^{\mathrm{n}}$ by itself or used [e.g. $\frac{0.69}{30}$] $\lambda=\frac{\ln 2}{30 \times 365 \times 24 \times 60 \times 60}$ |
| (1) $\left[=7.3 \times 10^{10}\right]$ |
| $A= \pm \lambda N$ stated or used (1) $=7.3 \times 10^{-10}(\text { e.c.f. }) \times \frac{1}{0.137} \times 6 \times 10^{23}(1)\left[=3.2 \times 10^{15} \mathrm{~Bq}\right]$ |
| [All] β absorbed [however expressed] \checkmark or no γ present [implies β absorbed] $\begin{aligned} & A=A_{0} e^{-\lambda t}\left[\text { or } A=A_{0} 2^{-n}\right] \\ & 1000=3.2 \times 10^{15} \mathrm{e}^{-\lambda t} \text { or } 3 \times 10^{15} \mathrm{e}^{-\lambda t}(1)\left[\text { or } 1000=3 \times 10^{15} \times 2^{-n}\right] \\ & \text { taking logs correctly(1) e.g. } \ln 1000=\ln \left[3.2 \times 10^{15}\right]-\lambda t \text { or equiv. } \\ & t\left[=\frac{1}{\lambda} \ln 3.2 \times 10^{15}\right]=4.1-4.9 \times 10^{10} \mathrm{~s} \quad[1240-1544 \text { years }](1) \end{aligned}$ | \& 2

2
2

2
1
1
3
10 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details \\
force on electrons is downwards [or electron deficiency on top] (1) due to Fleming's LHR [or stating that current is to the right] (1) \\
Voltmeter symbol shown connected between top and bottom faces \\
\(B q v=E q(1)[\) not \(B l v=E q\), but accept \(B e v=E q]\) \\
\(B q v=\frac{V_{\mathrm{H}}}{d} q(1)\) [i.e. using \(E=\frac{V_{\mathrm{H}}}{d}\)] + convincing algebra (1) \\
[from above step the answer alone suffices]
\[
n=15000 \div 2(1)
\] \\
\(I\left[=\frac{B}{\mu_{0} n}\right]=2.3 \mathrm{~A}(1)[\) allow 1 mark for \(1 \cdot 15 \mathrm{~A}\) missing first step] \\
In the middle / inside [of the solenoid] (1) with front face \(\perp^{\mathrm{r}}\) (1)[to axis of solenoid or B-field] \\
[NB: "inside current" \(x\), "between the coils" \(x\)]
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marks Available \\
2 \\
1 \\
3 \\
2 \\
2 \\
9
\end{tabular}} \\
\hline A4 \& (a)
(b)
(c)
(d) \& (i) \& \& \\
\hline A5 \& (a)
(b)

(c) \& \& \& 3
2
2

5
10 \\
\hline
\end{tabular}

In each case, any $3 \times(1)-$ no combining marks for different subjects

Higgs Boson Marking Points

- Last particle of standard model
- Related to mass (origin of mass of Universe etc.) / gives mass to matter
- Breaking electroweak gauge symmetry
- Has no spin/angular momentum
- Any prediction for mass with the unit $\mathrm{GeV} / \mathrm{c}^{2}\left[100-300 \mathrm{GeV} / \mathrm{c}^{2}\right.$ or $(100-300) m_{\mathrm{p}}$ or $\left.m_{\mathrm{n}}\right]$

(i.e. means of production)
- Possible solution to dark matter problem
- Possibly more than one Higgs predicted

Dark energy/dark matter

- Dark matter related to 'missing' mass (of Universe)
- Evidence from motion of (spiral) galaxies (ph4) \{accept from clusters, gravitational lensing etc.)
- Possibly affects anisotropy of cosmic microwave background
- Possible role in galaxy formation
- Does not interact with light (e-m radiation) - not "can’t be seen", but "can't be detected
- Possibly accounts for 80% [majority] of mass of Universe
- Higgs boson could be responsible for dark matter
- Dark energy possibly related to accelerated expansion of Universe
- Universe made of $\sim 74 \%$ [majority] dark energy
- Evidence for accelerated expansion from (class 1a) supernovae
- Recent evidence also for dark 'flow' or 'fluid' - any mention
- Dark flow/fluid possibly explains both dark matter/dark energy (no marks for details)

Grand Unification Theories

- Based on unification of force [1]aws
- Specifically weak, strong and electromagnetic (accept gravity as well even though this is theory of everything TOE)
- Electric \& magnetic already unified (Einstein)
- Electro-weak unification
- Anything to do with greater gauge symmetry or unified coupling constant
- Unification at high energies
- Not possible to check with particle colliders (i.e. too high an energy)
- Observation through proton decay or neutrino properties

Question			Marking details	Marks Available
C8	(a)	correct use of the word 'wavelength' [not breadth of undulations] (1) correct statement using path, path length or path difference (1) [e.g. light from the slits have a path difference of a whole number of wavelengths (for a bright fringe)] correct multiplication by 0.0254 (1) $700 \mathrm{~nm}-420 \mathrm{~nm}(1)$		2
	(b)			2
	(c)		Any $4 \times(1)$ from: - Contradicted Newton \checkmark - Newton - almost god-like status \checkmark - Previously accepted particle or corpuscular theory \checkmark - Young didn't publish 'raw' data \checkmark - Young didn't explain his working \checkmark - Brougham's review (not encouraging) \checkmark	4
	(d) (e)		Knife cuts lines of force induces emf in circuit containing knife	1
			Vibrations travel along lines of force (1) as a transverse wave (1) [or like waves in a stretched string]	2
	(f)	(i)	Cells of fluid spin (1) axes [of rotation] along lines of force (1)	2
			Clash of vortices [moving against each other at points of contact] (1) separating vortices by idlers (1) or by diagram	
				2
			- failure to detect either (or implied) \checkmark - Michelson-Morley experiment \checkmark - No motion detected relative to ether \checkmark (different from - Success of (special theory of) relativity \checkmark detecting ether) - Based on $n o$ special frame of reference \checkmark (i.e. no ether) - Any detail of Michelson-Morley experiment e.g. diagram of interferometer \checkmark or anything explaining two branches of light in interferrometer (at right angles) to compare motion through ether etc. +1 mark - standard of English and argument	
			Penalise: average SPaG / too much writing (if irrelevant) Reward: good writing even if SPAG borderline / confident argument e.g. The whole consept (sic) of the ether was nonsense and no experiment confirmed it's (sic) existence. [Good writing though borderline SPaG. First marking point $\rightarrow 2$ marks	20

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline \multirow[t]{8}{*}{C9} \& (a) \& (i) \& \begin{tabular}{l}
foreign atoms or other dislocations or grain boundaries (1) stop dislocations from moving (1) \\
[accept work hardening etc for max 1 mark]
\end{tabular} \& 4

2

\hline \& (b) \& (i) \& Hysteresis \& 1

\hline \& \& (ii) \& Greater for loading because area greater (1). [difference] goes to heat [in tendon] (1) \& 2

\hline \& \& (iii) \& | Attempt at working out area (s) (1) |
| :--- |
| Good attempt at working out both areas (1) |
| e.g. below loading $\sim 1 / 2 \times 0.006 \times 1200=3.6 \mathrm{~J}$ |
| + below unloading $\sim 1 / 2+11 / 2+21 / 2+31 / 2+51 / 2=131 / 2$ big sq $^{\mathrm{s}}(1)$ |
| [or equivalent method, e.g. trapezoidal rule] |
| Efficiency $=\frac{2.7}{3.6} \times 100=75 \%\left[\mathrm{eq}^{\mathrm{n}}+\right.$ calc-e.c.f. on work values $](1)$ | \& 3

\hline \& \& (iv) \& | I. $\quad W=\frac{1}{2} F e[$ or $W=1 / 2 \times$ stress \times strain \times volume $]$ $E=\frac{F l}{A e}(1)$ or $E=\frac{\sigma}{\varepsilon}$ and $\sigma=\frac{F}{A}$ and $\varepsilon=\frac{\Delta l}{l}$ |
| :--- |
| Convincing substitution + algebra (1) | \& 3

\hline \& \& \& | II. $F=1200 \mathrm{~N}$ and $W=3.6 \mathrm{~J}$ e.c.f. from (iii) [other possibilities] / or other values from graph (1) |
| :--- |
| $l=0.3 \mathrm{~m}$ and $A=0.55 \times 10^{-4} \mathrm{~m}^{2}$ [i.e. unit conversions] (1) $E\left[=\frac{1200^{2} \times 0.3}{2 \times 0.55 \times 10^{-4} \times 3.6}\right]=1.1 \mathrm{GPa} / \text { or } E=\frac{F l}{A e} \rightarrow 1.1 \mathrm{GPa}(1)$ | \& 3

\hline \& \& \& | Any $2 \times(1)$ from: |
| :--- |
| - Large Young modulus [accept stiff] \checkmark |
| - Large strains without breaking [accept 'elastic', 'flexible'] \checkmark |
| - Large stress without breaking/high [ultimate] tensile strength [accept 'strong'] \checkmark | \& 2

\hline \& \& \& \& 20

\hline
\end{tabular}

Question			Marking details	Marks Available
C10	(a)	(i)	A = piezoelectric [crystal] \checkmark	1
		(ii)	Stop reflection inside probe [or equiv., e.g. stops waves being cancelled etc.]/ absorb wave going to left / allows short pulses to be generated	1
		(iii)	$\begin{aligned} & \text { Correct substitution into } Z=\rho v \text { once }(1) \\ & {\left[Z_{\text {air }}=442 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} ; Z_{\text {skin }}=1.7 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right]} \\ & R=0.99[897](1) \text { [accept } 1, \text { with evidence of good substitution] } \end{aligned}$	2
		(iv)	No [independent mark] - too much reflection [or implied - e.g. 'nearly all reflected from first boundary'] (1)	1
	(b)	(i)	Isotope of / [chemically] the same as the element it replaces (1) Suitable half life or stable daughter nuclide or γ emitter (1)	2
		(ii)	[Activity] rises then falls \checkmark	1
	(c)	(i)	X-ray output increases / intensity increases [accept: more X-rays] [because of more electrons per second]	1
		(ii)	$\begin{aligned} & \frac{1}{2} I_{0}=I_{0} e^{-\mu x}[\text { i.e. substitution] (1) } \\ & e^{\mu X_{\frac{1}{2}}^{2}}=2 \rightarrow \ln 2=\mu X_{1 / 2} \text { (1) [convincing manipulation] } \end{aligned}$	2
		(iii)	$\mu=57.8 \mathrm{~m}^{-1}$ [or $0.0578 \mathrm{~mm}^{-1}$]	1
		(iv)	$\begin{aligned} & 0.05 I_{0}=I_{0} e^{-\mu x}[\text { or equiv or by impl }] \\ & {[\mu x=\ln 20 \rightarrow] x=0.052 \mathrm{~m}(1)} \end{aligned}$	2
	(d)	(i)	Units on Potential axis / [m]V and time axis / [m]s(1) Large pulse (1) Small pulse before and after (1)	3
		(ii)	So voltage not lost [due to resistance of body] / because can only supply a v small current etc.	1
		(iii)	Any $2 \times(1)$ of: - Large [voltage] gain \checkmark - Reliable / robust / cheap \checkmark - Even frequency response \checkmark - high SNR \checkmark	2
				20

Question			Marking details	Marks Available
C11	(a)	(i)	 Any $2 \times(1)$ sensible points, e.g. - friction in gears / links / engine / wheels [not tyres] \checkmark - air resistance / drag [not heat / sound - too unspecific] \checkmark - tyre hysteresis / internal energy [heat] in tyres \checkmark	3 2
		(iii) (iv)	$2^{\text {nd }}$ Law of Thermodynamics (1) ... heat must be wasted (1) [accept: [ideal] efficiency $\left.=1-\frac{T_{2}}{T_{1}}\right]$ $\left[\frac{42}{5.8} \times 100=\right] 724 \mathrm{~km}$	2
		(v)	mass of carbon in tank $=0.042 \times 780 \times 0.85 \mathrm{~kg}$ (1) ratio of carbon to CO_{2} is $12: 44$ [or used or by impl.] (1) mass of $\mathrm{CO}_{2}\left[=0.042 \times 780 \times 0.85 \times \frac{44}{12}\right]=102 \mathrm{~kg}(1)$	3
		(vi)	$\frac{102}{724}[\text { e.c.f. on (iv) and (v) }]=0.141 \mathrm{~kg} \mathrm{~km}^{-1}(1)$ Appropriate comment: e.g quite good agreement / nearly all carbon is burned (1)	2
		(vii)	greenhouse gas / [probably causes] global warming	1
		(i)	$350 \mathrm{TWh}=350 \times 10^{12} \times[60 \times 60(1)]=1.26 \times 10^{18} \mathrm{~J}(1)$	2
		(ii)	40 GW	1
		(ii)	To cope with peak / winter demand or at 6 o'clock everyone boils a kettle etc.	1
		(iv)	pump water to higher level / pump storage scheme (1) release when required to produce electricity [via turbines and generator] (1)	2
				20

